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Abe- : Tbe amjugatc addition d LSA 1 to t-butyl (4S)4(tri1yl)oxy-2-penta1oa1c 2d followed 
by aIdol coodensacion wi(h acetaldehyde produces a key intermediate 3 IO ~-la~lllm derivativea a~ a 
single diastcseoi- in 77 9% yield. 

A number of excellent methods for the synthesis of 8-lactams including 18-methylcarbapenems have 

been developed in the past ten years.’ We previously reported an entirely new approach to the synthesis of the 

@lactam framework via a three component coupling (ICC) process using higher order amide cuprates2; the 

regioaelective amjugate addition of the amide cuprate reagent of LSA (lithium N-benzyl(trimethytsilyt)amide) 

to iphenyl-2.4pentadienoate having a sultam chiral auxiliary, followed by aldd condensation with 

acetaldehyde, afforded a t&ctam with high de and ee (all in one-pot). Although the absolute stereochemistry 

at C-3 corresponded to that of natural 8&ctams. the stereochemistries at C-4 and the hydroxyethyl unit were 

opposite to those in the natural framework. 2 More recently, we have shown that the conjugate addition of 

chiral lithium amide, LiNBn(C*HMePh). to t-butyl5phenyl-2.4pentadienoate provide8 regi~ and diastereo- 

selectively the corresponding g-amino ester in essentially quantitative yield with ~99 96 de, which can be 

converted via aldol condensation into the f&lactam having the correct absolute configuration (a modified TCC 

process).3 However, the diastereoselectivity of the aldol condensation step was not 100 96; the ratio of the 

desired diastereoisomer to other diastemom ers was 91 : 9 at best.3 

We wish to report that the conjugate addition of LSA 1 to t-butyl (4S)4(trityl)oxy-2-pentenoate 2d 

followed by aldol condensation with acetaldehyde produces the desired diastereoisomer 3 as a single product 

in 77 % yield (all in one-pot) (eq 1). Conversion of 3 to the azetidinone derivative 4 prooccdcd in 81% yield 

When we started this project, little was known about the diastereoselectivity on the 1.2~asymmetric induction 

in the conjugate addition of lithium amides to y-atkoxy-substituted a&unsaturated esters, although the 
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selectivities of the addition of aminesp alkoxides.5 and carbon nucleophile& had been reported. The syn- 

selectivity was previously reported for the conjugate addition of benzyIamine4a.b and various alkoxid& to 

acyclic a,@-enoates and their derivatives. A more complex situation holds for the addition of organometallic 

reagents (carbon nucleophiles) to acyclic y-alkoxy-a&unsaturated enoates and enon&, the anti-selectivity 

has been observed frequently with organocopper reagents, but in certain cases organolithium and copper 

reagents have reacted with syn-selectivity. Accordingly, we first examined the diastereoselectivity on the 

addition of LSA to the y-silyloxy and alkoxy-a&unsaturated esters 2 (eq 2). Although the syn-selectivity 

l B”OE++J 5 . . ..&~ + l 3.,,~ (eq2) 

Hw 
wph 

ayn 5 anti 6 

2~ R=TBDMS 91% 54 : 46 

b; R=TSDPS 99% 89 : 11 

e; R =TlPS 95% 90 : 10 

d; R=Tr 77% loo : 0 

was quite low in the case of the t-butyldimethylsilyloxy derivative 2a, the diastereoselectivity was increased up 

to 100 46 by using the sterically very bulky trityloxy derivative 2d. However. the chemicaI yield was 

decreased to 77 % due to the steric bulkiness. Both t-butyldiphenylsilyl 2b and triisop~pylsilyl 2e protected 

substrates gave the syn-adducts 5 in very high chemical yelds with significantly high syn diastereoselectivity.7 

The syn selectivity can be accounted for by a modified Felkin-Anh model 7. in which RO group adopts anti, 

7 

Me adopts inside, and the nucleophile attacks from the less hindered outside. It is not clear at the present time 

why the addition of methylcuprates to 2a produces the anti-adduct with high diastereoselectivite although the 

lithium amide addition to the same enoate gives the syn k-amino ester 5 predominantly. 

Being encouraged by the perfect stereocontrol via 2d, we carried out the TCC process (all in one-pot). 

To a THF solution (50 mL) of N-benzyl(trimethylsilyl)amine (4.1 mL. 21 mmol) at -78 “C under Ar was 

added dropwise a 1.76 M hexane solution of n-BuLi (11 mL, 20 mmol). The mixture was stirred for 30 min 

and a THF (10 mL) solution of 2d (5.0 5, 12 mmol) was added at -78 “C. After 90 min. MeOH (0.89 mL, 22 

mmol) was added and the mixture was stirred for 20 min at -78 “C. To this mixture under AJ was added 

slowly a THF (40 mL) solution of LDA (100 mmol) precooled at -78 ‘C; it took 10 min for the addition. After 
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20 min. a SM THF solution of acetaldehyde (30 mL. 150 mmol) was added slowly. The mixture was stirred 

for 90 min at -78 “C. and the mtion was quenched with aqueous NH&I solution. After the usual work-up, 

a crude product was treated with TBDMSCI (3.0 g, 20 mm@ and imidazole (1.2 g, 17 mmol) in CHzCI2 (20 

mL) at 0 ‘C. The astral work-up and purification with a silica-gel column chromatography using hexane I ethyl 

acetate (10 I 1) as an eluent gave 3 (6.3 g) in 77 % yield. To a THF (15 mL) solution of 3 (0.43 g. 0.63 

mmol) at 0 ‘C under Ar was added a 0.9 M THF solution of ethylmagnesium bromide (2.1 mL, 1.9 mmd).* 

After 2 h. the reaction was quenched with aqueous NH&I solution. The usual work-up and purification gave 

4 (0.31 g) in 81 % yield. 

The absolute configurations at C-4, C-3, and the silyloxyethyl unit of 4 were determined in the following 

way. Since the syn stereochemical relationship between C-3 and C-4 of 5 is established,7 it is clear that the 

absolute configuration at C-3 of 3 is S. The coupling constant between H4 and H3 of 4 was J = 2.0 HZ 

indicating that the two substituents at C-4 and C-3 of the S-la&am skeleton adopt trans-geometry and the 

absolute configuration at C-2 of 3 is S. The TCC product 9, obtained from 2b. was converted to 10 upon 

deprotection of an acetyl group with K2CO3 / MeOH - Hz0 and subsequent treatment with TCF 

(trichloromethyl chloroformate) (eq 3). From the coupling constant (J&e = 11.5 Hz), it is clear that the 

HNBn 

J,j..= 11SHz 0 

8 

stereochemical relation between methyl and t-butoxycarbonyl substituent of 10 is trans and hence the absolute 

conliguration of silyloxyethyl unit of 3 (and 4) is R. (3S, 4s) Configuration of 4 is also confitmcd by the 

coupling constant Jc-d = 4.8 Hz of 10. 

Since Z-enolates are formed stereoselectively from the reaction of p-amino esters with LDA,9 the Z 

isomer 11 is presumably a key intermediate for the aldol condensation of Sd. The electrophilic attack of 

acetaldehyde to 11 would take place as shown in 12, a hydrogen atom adopts inside due to severe 1,3-allyhc 

stnin by t-BuO group. The condensation would occur via a synclinal dmembered cyclic transition state 13. 

giving 3 with essentially 100 %I de. Now we are in a position to obtain concisely the @-lactam framework 4 

having correct absolute configurations at the three contiguous chital centers. We are investigating a method for 

converting 4 into other g-la&m derivatives. 
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